

 1

Implementation and Analysis of BREACH Attack

System

LIU Jin-jian, GUO Zi-yun, YANG Zong-qi, LI Jun-le and XU An-jun

Abstract—In the transmission of network

information, compression algorithms such as

DEFLATE are commonly used to minimize

bandwidth consumption. However, these

algorithms pose a risk of secret information

leakage. The Browser Reconnaissance and

Exfiltration via Adaptive Compression of

Hypertext (BREACH) attack exploits pre and post

compression changes in the HTTP response

information body to steal information, displaying

typical SSL/TLS attack characteristics. This

project aims to raise awareness and educate users

about the BREACH attack. It involves developing

a user-friendly interface and conducting a

comprehensive simulation of the BREACH attack,

analyzing its characteristics and mechanisms, and

comparing it with similar attacks to gain a deeper

understanding. The project's findings will be

summarized, and prevention suggestions will be

provided to enhance network security awareness.

Index Terms—compression, BREACH attack,

SSL/TLS, security

I. INTRODUCTION

Compression is a useful technique for

saving the bandwidth and widely used in

various systems, while acting as a side-

channel[1] without any preventive measures.

However, when plaintext data is compressed

before encryption, the length of the resulting

ciphertext can inadvertently reveal infor-

mation to potential attackers. This

vulnerability has led to the emergence of

attacks that exploit this side-channel

information.

The BREACH attack is one of them, as a

compression side-channel attack, which

targets information compressed in HTTP

response bodies. This attack can be used to

extract login credentials, anti-CSRF tokens

and other sensitive, personally identifiable

information from SSL-enabled websites.

This paper primarily focuses on give a

completely sight in the system we implement,

in addition to that, the paper also providing a

comprehensive analysis of the BREACH

attack, in comparison to other similar attacks.

The aim of the paper is to present a detailed

examination of the complete BREACH attack,

highlighting its intricacies and implications.

A. Overview of CRIME and BREACH

CRIME (Compression Ratio Info-leak

Made Easy) and BREACH (Browser

Reconnaissance and Exfiltration via Adaptive

Compression of Hypertext) are two security

attacks related to SSL (Secure Sockets Layer)

and TLS (Transport Layer Security).

The CRIME attack, introduced by Rizzo

and Duong in 2012[2] targets SSL/TLS and

exploits the compression ratio of HTTP

responses to discover session tokens or other

sensitive information. It can be triggered

when a user visits a website controlled by an

attacker, and the attacker manipulates the

victim into sending requests to a specific

URL, leading to significant information

leakage and potential loss[4].

BREACH, on the other hand, is another

attack on SSL/TLS that was discovered in

2013[3]. It leverages the compression of

HTTPS responses to extract sensitive

information, such as CSRF tokens or

authentication credentials, from the

compressed responses. The attack takes

advantage of the way compression algorithms

work by analyzing the variations in the

compressed data size.

The project mainly focus on BREACH and

the process and mechanism in detail will be

discussed in the subsequent sections.

L. JJ is a student at the College of Software, Sichuan

University, Chengdu, China.

G. ZY is a student at the School of Cyber Science and

Engineering, Sichuan University, Chengdu, China.

Y. ZQ is a student at Department of Computer Science

and Engineering, Southern University of Science and Te-

chnology, Shenzhen, China.

L. JL is a student at School of Cybersecurity, Northwe-

stern Polytechnical University, Xian, China.

X. AJ is a student at College of Informatics, Huazhong

Agricultural University, Wuhan, China.

 2

B. Our contribution

Our project team's objective is to present

the characteristics and mechanisms of the

BREACH attack for educational purposes.

We have successfully implemented the

BREACH attack model and constructed a

WEB platform with user-friendly pages,

considering educational aspects, to make the

system accessible and rewarding for any user.

Furthermore, we conducted research to

analyze and compare the BREACH attack

with other popular SSL tools, and we have

compiled a comprehensive summary of our

findings

II. BREACH ATTACK

A. DEFLATE Compression Algorithm

The BREACH attack is mainly focus on

DEFLATE compression algorithm, which is

a lossless data compression file format that

uses a combination of LZ77 and Huffman

coding.

For LZ77, it basically Using slide window

contains data, moving forward as progress.

Main process are as follows[5]:

First, the algorithm begins with an empty

buffer and an empty output stream. Then, it

searches for patterns of data within the sliding

window that match the current input data

being processed. When a match is found, it

represents it as a pair (length, distance),

where "length" indicates the number of

matching characters and "distance" shows the

offset from the current position to the start of

the match within the sliding window.

Next, the algorithm outputs the (length,

distance) pairs for matches and the literal

characters that do not match any previous

data. This output is designed to be stored or

transmitted efficiently. As new data is

processed, the sliding window slides forward,

discarding the old data and adding the new

data to the window.

The process repeats itself as the algorithm

continues to search, encode matches, output

data, and update the sliding window with

each iteration.

For Huffman coding, which is the process

of finding or using such a Huffman code,

which is a particular type of optimal prefix

code that is commonly used for lossless data
compression.

Mechanism

Breakthrough point ：The length of the

compressed data is still visible after

compressing with the DEFLATE algorithm,

The attacker needs to Inject his guesses of

the secrets (using JavaScript) into the HTTP

response bodies at the first time, then observe

the time when responses would be highly

compressed, and the output length differs,

means the guess matches, after that, it’s time

to detect the secret information, and finally

the complete secret has been extracted.

III. IMPLEMENTATION

A. Overview

In this part, we mainly simulate the attack

and display it in webpage, adding functions

so that users can easily interact with it.

B. Implement the Web

We use html, css, javascript to develop the

webpage and interactive functions, the main

steps and figures related are shown as follows.

Firstly, we trying to design and finish

the layout of the webpage.

Figure 1. Layout of the webpage

Then, design the style of different elements

and add appearance elements on the page,

find the appropriate background image, then

fill in the text and make some adjustments.

 Figure 2. Introduction in webpage

https://en.wikipedia.org/wiki/Lossless_compression
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/LZ77_and_LZ78
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Prefix_code
https://en.wikipedia.org/wiki/Prefix_code
https://en.wikipedia.org/wiki/Lossless_data_compression
https://en.wikipedia.org/wiki/Lossless_data_compression

 3

 Figure 3. Interaction design in webpage

In order to show more information and

raise the concern of prevention, we also give

some advice of preventing such an attack.

 Figure 4. Preventing advice shown in webpage

C. Implement the Attack

This lab system is based on the Docker virt

ualization platform and Tencent Cloud lightw

eight servers. The Docker virtualized containe

rs are deployed on Tencent Cloud lightweight

 servers, simulating a victim host within one

Docker container, while using the cloud serve

r as the attacking host to launch attacks agains

t the Docker container.

Figure 5. Attack implementation architecture

In detail, we first to gain control of the

victim's network. In this system, the attacker

is able to inject code to the victim's machine

for execution, and note that we primarily

assume that we have already gained control of

the victim's host network and successfully

injected attack script into the victim's host,

gaining partial control over the victim's

network.

The attack script initiates multiple requests

to the target website, which are intercepted

and analyzed by the attacker. Since the

attacker script runs in a different context from

the target website, it is bound by the same-

origin policy and unable to access the

plaintext or encrypted responses directly.

However, the encrypted requests and

responses are accessible to the sniffer through

direct network access.

By comparing the lengths of the encrypted

data, the sniffer can deduce information about

the corresponding plaintext lengths and their

relationships.

A successful attack completely decrypts a

portion of the plaintext. The portion of the

plaintext which the attack tries to decrypt is

the secret. That portion is identified through

an initially known prefix which distinguishes

it from other secrets. Each byte of the secret

can be drawn from a given alphabet, the

secret's alphabet.

Figure 6. Attack schematic diagram

IV. RESULT AND ANALYSIS

A. The result of our system

The system successfully worked. During

user operations, the occurrence of BREACH

attacks and web page interactions can occur

correctly

B. Analysis

The analysis of BREACH attack mainly

focuses on the advantages and disadvantages

compared to other attacks related to it, and

given to the characteristic of this attack,

methods of preventions are also provided [6]

Advantages of the BREACH Attack are

shown as follows:

• Effective Information Extraction: The

BREACH attack can effectively extract

sensitive information from vulnerable web

applications. By manipulating the size of

compressed responses, attackers can infer

specific parts of the plaintext, enabling them

to extract valuable data.

• Low-Cost Attack: Implementing the

BREACH attack does not require

 4

sophisticated tools or substantial computing

resources. Attackers can use relatively simple

scripts or tools to perform the attack, making

it accessible to a wide range of adversaries.

• Difficult to Detect: Detecting a BREACH

attack is challenging since it leverages

legitimate TLS/SSL communications. As a

result, traditional intrusion detection systems

may struggle to identify the attack, allowing it

to remain undetected for extended periods.

Disadvantages of the BREACH Attack are

shown as follows:

• Limited Targets: Not all web applications

are vulnerable to the BREACH attack.

Several conditions must be met for a

successful attack, such as the presence of

specific types of sensitive data and the usage

of HTTP response compression.

• Mitigations Available: The BREACH

attack received significant attention upon its

discovery, leading to various mitigation

strategies being developed. For example,

disabling HTTP compression, randomizing

secrets, or implementing anti-CSRF tokens

can help protect against this attack.

• Complex Execution: While the attack

concept is relatively simple, carrying out a

successful BREACH attack can be more

challenging in practice. Attackers need to find

and exploit vulnerable web applications and

manipulate the victim's browser to send cross-

origin requests.

C. Prevention:

The available prevention methods against

this attack are currently limited. The article

briefly introduces these methods without

delving into extensive details, and they

primarily include the following:

The first is length hiding: This method

involves adding random padding or extra

characters to the plaintext data before

compression, making the resulting ciphertext

lengths less predictable and harder for

attackers to infer sensitive information.

Disabling compression is also a useful

method: By disabling compression in the

communication protocols, the vulnerability

exploited by the BREACH attack can be

eliminated. However, this may lead to

increased bandwidth usage.

Furthermore, separating secrets from user

input can also be useful: Keeping sensitive

information, such as session tokens or

authentication credentials, separate from user-

controllable input can help reduce the attack

surface and make it more challenging for

attackers to exploit the compression

vulnerabilities.

For more approaches, are masking secrets

and request rate-limiting and Monitoring: the

pre approach involves obfuscating the

sensitive data in a way that makes it

challenging for attackers to recognize or

distinguish specific patterns related to the

secrets. For the post one, implementing rate-

limiting measures on incoming requests and

monitoring for suspicious activity can help

detect and mitigate BREACH attacks in real-

time.

Up to 2021, the BREACH attack is still

very effective, although exact numbers have

not been found, there are not a few websites

with weaknesses in this regard, and the

protection methods are mostly limited to the

few described above, which has research

prospects.

D. Attacks comparison

This section provides a discussion on some

attacks that most of which are stated above.

Our discussion is based on specific criteria[7]

that are selected to evaluate the current state

of the art, which are:

• Weakness: Identifies the vulnerability of

the system that has been attacked.

• Effect: Identifies the action that has been

enforced by the attack.

• Limitation, to find a limitation on the

current solution for the attack.

Such discussions on these criteria are

shown in TABLE 1 as follow.

TABLE1: ATTACKS COMPARRISON

Attack Effects Weakness

BEAST Recover the cookies Predictable IV in CBC

mode

CRIME Discover session token or

other secret information
Compressed size of HTTP

requests

TIME Infer the compressed

payload’s size
Compressed size of HTTP

response

BREACH Extracting the secrets

behind the HTTP response
Compressed size of HTTP

response

Lucky 13 Get the decrypted message

without key
Pad is not include in MAC

 5

V. CONCLUSION

BREACH attack is a typical compression-

based side-channel attack that has been

widely discussed in the internet security

community. Our work is to implement the

attack and take it as an educational use for all

of the users have a deeply understanding of

the attack and hopefully enhancing awareness

of network security prevention, which is

becoming increasingly important in

contemporary times. In addition, our project's

analysis and comparison of BREACH attacks

can also predict potential forms of future

network attacks at a certain level, hoping to

be helpful for future research on related

network security

References

[1] Kelsey, J: Compression and information

leakage of plaintext. In Daemen, J., Rijmen, V.,

eds.: FSE 2002.

[2] Rizzo, J., Duong, T.: The CRIME attack

Presented at ekoparty 12. http://goo.gl/mlw1X1

[3] Gluck, Y., Harris, N., Prado, A.: SSL, gone in

30 seconds: A BREACH beyond CRIME. In:

Black Hat USA 2013.

[4] I. Sankalpa, T. Dhanushka, N. Amarasinghe, J.

Alawathugoda and R. Ragel, "On

implementing a client-server setting to prevent

the Browser Reconnaissance and Exfiltration

via Adaptive Compression of Hypertext

(BREACH) attacks," 2016 Manufacturing &

Industrial Engineering Symposium (MIES),

Colombo, Sri Lanka, 2016.

[5] J. Ziv and A. Lempel, "A universal algorithm

for sequential data compression," in IEEE

Transactions on Information Theory, vol. 23,

no. 3, pp. 337-343, May 1977.

[6] ATTACKS ON SSL A COMPREHENSIVE

STUDY OF BEAST, CRIME, TIME,

BREACH, LUCKY 13 & RC4 BIASES, Pratik

Guha Sarkar, Shawn Fitzgerald, San Francisco,

August, 2013.

[7] A. E. W. Eldewahi, T. M. H. Sharfi, A. A.

Mansor, N. A. F. Mohamed and S. M. H.

Alwahbani, "SSL/TLS attacks: Analysis and

evaluation," 2015 International Conference on

Computing, Control, Networking, Electronics

and Embedded Systems Engineering

(ICCNEEE), Khartoum, Sudan, 2015.

